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Small rigid spherical parti&es are settling under gravity through Newtonian fluid, 
and the volume fraction of the particles ($) is small although sufficiently large for 
the effects of interactions between pairs of particles to be significant. Two neighbouring 
particles interact both hydrodynamically (with low-Reynolds-number flow about 
each particle) and through the exertion of a mutual force of molecular or electrical 
origin which is mainly repulsive; and they also diffuse relatively to each other by 
Brownian motion. The dispersion contains several species of particle which differ in 
radius and density. 

The purpose of the paper is to derive formulae for the mean velocity of the particles 
of each species correct to order 4, that is, with allowance for the effect of pair inter- 
actions. The method devised for the calculation of the mean velocity in a monodis- 
perse system (Batchelor 1972) is first generalized to give the mean additional 
velocity of a particle of species i due to the presence of a particle of speciesj in 
terms of the pair mobility functions and the probability distribution pii(r) for the 
relative position of an i and a j  particle. The second step is to determine pii(r) from a 
differential equation of Fokker-Planck type representing the effects of relative motion 
of the two particles due to gravity, the interparticle force, and Brownian diffusion. 
The solution of this equation is investigated for a range of special conditions, 
including large values of the Ptclet number (negligible effect of Brownian motion); 
small values of the Ptclet number; and extreme values of the ratio of the radii of 
the two spheres. There are found to be three different limits forpij(r) corresponding to 
different ways of approaching the state of equal sphere radii, equal sphere densities, 
and zero Brownian relative diffusivity . 

Consideration of the effect of relative diffusion on the pair-distribution function 
shows the existence of an effective interactive force between the two particles and 
consequently a contribution to the mean velocity of the particles of each species. 
The direct contributions to the mean velocity of particles of one species due to 
Brownian diffusion and to the interparticle force are non-zero whenever the pair- 
distribution function is non-isotropic, that is, at  all except large values of the PCclet 
number. 

The forms taken by the expression for the mean velocity of the particles of one 
species in the various cases listed above are examined. Numerical values will be 
presented in Part 2. 
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1. Introduction 
This paper is concerned with one of the classical problems of colloid science, viz. 

calculation of the average speed of fall of small particles in a statistically homogeneous 
dispersion acted on by il vertical body force proportional to the local density. The 
particles are suspended in Newtonian fluid of density p and viscosity 7, and the dis- 
persion is contained in a stationary vessel whose walls are far apart. The Reynolds 
number of the flow around one particle is assumed to be small, so that inertia forces 
may be neglected. If the concentration of particles is very small, and the particles 
are far apart from each other, the speed of fall of each particle is approximately the 
same as for an isolated particle. At higher concentrations the effect of interaction of 
the particles becomes significant. Here we investigate the effects of hydrodynamic 
interactions and interparticle forces between pairs of particles, and obtain formulae 
for the average fall speed of particles which are correct to the order of the first power 
of the volume fraction of the particles. 

In  the case of a dilute dispersion of identical particles it has been found (Batchelor 
1972) that the average velocity relative to zero-volume flux axes (that is, relative to 
the containing vessel) is given by 

(U) = U@){ 1 + 84 + 0 ($”}, (1 .1)  
where $ is the volume fraction of the particles, U(O) is the fall velocity of a particle 
in isolation, and the sedimentation coefficient S has the value - 6.55 for rigid spherical 
particles which exert no direct force on each other except when touching. 

In the more general case to be considered here, there are m different species of rigid 
spherical particle. The radius, density, number density, volume fraction, and velocity 
in isolation of each particle of species i will be denoted by 

ai,pi, ni, $i, Up) (i = I ,  2, . .., m) 

respectively. Auniform body force per unit mass g (which will be described as gravity 
although it might also represent centrifugal force) acts on the dispersion, and so 

where 

The effect of pa.irwise interactions of particles of species i and j on average fall 
speeds evidently depends on the statistics of relative positions of particles of these 
two species, in particular on the pair-distribution function n j p i j ( r )  defined as the 
probability of finding the centre of a particle of species j in unit volume at position r 
relative to the centre of a particle of species i (p i j  being normalized so that p i j ( r )  -+ 1 
as r + a). This pair-distribution function is determined, in a dilute dispersion, by the 
motion of the two particles through the suspending fluid due both to gravity and to 
any interactive force which may act between the two particles and by Brownian 
diffusion of the two particles. 

The magnitude of the effect of Brownian diffusion relative to the effect of motion 
due to gravity is measured by the inverse of the PCclet number, and increases as the 
particle radii decrease. In  the particular case of a dispersion of identical particles with 
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no interactive force, the relative velocity of two neighbouring particles falling under 
gravity is zero (giving zero Ptclet number regardless of the particle size) and there is 
no opposition, however large the particles may be, to the tendency for relative 
Brownian diffusion to make the pair-distribution function uniform. The previous 
investigation of sedimentation in a monodisperse system (Batchelor 1972) thus 
involved Brownian motion only indirectly, in that the existence of Brownian motion 
provided a justification for the assumption of a uniform pair-distribution function, 
and there was no need for any quantitative consideration of relative Brownian 
diffusion. The position is quite different in the present case of a polydisperse system, 
and the effect of Brownian motion plays a significant role in the analysis under all 
conditions except large values of the PCclet number. 

It will be supposed that neighbouring particles exert a central force of molecular 
or electrical origin on each other and that the potential of the mutual force exerted 
between a particle of species i and a particle of species j whose centres have vector 
separation r is a function of r ( = Irl) alone,? Oij say, which is defined for r > a$ + aj. 
The rigidity of the spheres prevents any closer approach of the two sphere centres 
than r = ai + ai. At some positive values of r - (ai + a j )  the force might be attractive. 
However, we shall assume later that a steady pair-distribution is set up in a sediment- 
ing system, and this implies that the attractive force is not so strong as to cause per- 
manent particle doublets to form. In  the terminology of colloid science, the dispersion 
is stable. 

+ q52 + . . . + q5m) 
depends on pair interactions only, and, since it is necessarily vertical like Up), may be 
written as 

( u , ) = u ~ o ) ( I + c s , , ~ ~  ( i = 1 , 2  ,..., m). 

The dimensionless sedimentation coefficient Sij is a function of the size ratio A, the 
(reduced) density ratio y, the PCclet number of the relative motion of an i-particle 
and a j-particle, and some dimensionless measure of the interparticle potential Qij. 
When i = j ,  Sii is equal to the sedimentation coeEcient S defined in (1.1) for a mono- 
disperse system. Note (i) that the two parallel applied forces represented by Uio) and 
Up) are involved in the determination of the pair-distribution function, on which Sdi 
depends, so that the contribution to (Ui) due to pair interactions is not linear in Up) 
and Up) in general, despite the appearance of (1.5), and (ii) that the choice of one of 
the two applied forces, viz. Uy), as a normalizing factor in the pair-interaction term 
in (1.5) may lead to Sii having singular values in a case in which Uio) has much smaller 
magnitude than U:'). 

The purpose of the paper is to show how Sij may be determined from the interaction 
of two spheres of different size and density. In  § 3 we give the formula for the direct 
contribution to the sedimentation coefficient due to gravity and mutual interaction 
forces, for a given pair-distribution function. Then in 3 4 we derive the equation for 
the pair-distribution function, with allowance for the effects of gravity, hydrodynamic 
interactions, the interparticle force, and relative Brownian diffusion, and investigate 

t In the case of particles with electrical charges attached to the surface and a surrounding 
cloud or 'double layer' of counter-ions in the fluid, the interparticle force of electrical origin 
might be affected by the streaming of the fluid past each particle, but we shall ignore such 
effects here. 

The mean velocity of particles of species i correct to order q5 ( = 

(1.5) 1 m 

j=1  

13-2 
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the solution analytically in the illuminating limiting cases of large and small Ptclet 
number and for some other special cases. It appears from this investigation that the 
pair-distribution function is non-uniform and non-isotropic in general. The resulting 
diffusive flux of particles of one species relative to those of another species tends to  
restore the uniformity of the pair-distribution function and thereby makes a direct 
contribution to the sedimentation coefficient which is described in $ 5 .  This direct 
contribution due to  Brownian motion, which is equivalent to  that due to a (non- 
central) interactive ‘thermodynamic ’ force, is significant in a polydisperse system 
whenever the PCclet number is not large, and remains significant, somewhat para- 
doxically, when the Piclet number is small and the pair-distribution function is 
approximately uniform in consequence of the dominant effect of Brownian motion. 

I n  3 6 the results of $9 3-5 are brought together in analytical formulae for Sij in the 
various limiting or special cases of interest. 

I n  Part 2 (Batchelor & Wen 1982), numerical values of the pair-distribution function 
and of the sedimentation coefficient in a number of particular cases will be presented. 

2. The mobility coefficients for two spheres to which forces are applied 
As explained above, the term of order q5 in the expression for the mean velocity of 

spheres of species i is determined by interactions of pairs of spheres, with a t  least one 
particle of each pair being of species i. It is essential therefore to know how two spheres 
of different size move when they are acted on by given applied forces in fluid a t  rest 
a t  infinity. This is the basic deterministic hydrodynamic problem underlying the 
investigation of sedimentation velocities to order 4. We adopt here the specification 
and notation of the relevant parameters of this flow field given in an earlier paper 
(Batchelor 1976, 3 4)) and only the essential details will be repeated. 

Suppose that an external force F, acts through the centre, at position xl, of a 
sphere of radius a,, and a force F, acts similarly on a sphere of radius u2 a t  x,. The 
two spheres are alone in fluid a t  rest at infinity, and inertia forces are negligible. The 
two forces generate superposable motions, and the resulting instantaneous velocities 
of the two spheres may be written as 

U, = b1,. F1+ b,, . F,, U, = b,, . F, + b,, . F,, 
where the b,,, etc. are mobility tensors which depend only on the geometry of the two- 
sphere configuration. Since the sphere configuration is symmetrical about the direction 
of r( = x, - xl) we may write 

where a,P = 1 or 2,  r = Irl, I is the unit second-rank tensor, and the dimensionless 
scalar coefficients A,, and B,, are functions of the two dimensionless variables 

These two-sphere mobility functions A,, and B,, play a central role in the calculation 
of sedimentation velocities t o  order 4. 
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Note that, as a consequence of t,he choice of non-dimensionalizing factors made in 
(2.2)’ A,, and B,, are finite a t  all values of A ,  and 

A,,,B,,+ 1 as s - t m  when a = @  

0 when 01 +@. 

It can be shown from the reciprocal theorem that A,, = A,, and B,, = B,,. And by 
exchanging the roles of the two particles we find 

A,,(s, 4 = A,&, B,,(s, 4 = B,,(s, (2.4) 

(2.5) 
A1,(s, A )  = A,,(s, A )  = A,,(s, h-’) = A,,(s, h-’),’ 

B,,(s, A )  = B,,(s, A )  = B,,(s, A-l) = B,,(s, h-l). I 
A knowledge of the various asymptotic forms of these mobility functions will later 

be found useful. As is well known, series expansions in powers of s-1 can be found 
when s $ 1 by the ‘method of reflections’. Jeffrey (1982) has recently given a large 
number of terms, of which the following are sufficient for our present (analytical) 
purposes : 

(2.6) 

60h3 32h3( 15 - 4h2) 192h3(5 - 22h2 + 3h4) 
- + O(s-10) (1+h)4s4+ ( 1 + h ) 6 ~ 6  (1 +h)SsB 

A,, = 1 -  

B,, = 1-- 
68h5 32h3( 10 - 9A2 + 9A4) - + O(s-10) 

(l+h)GSG (1+h)*s8 

3 l+h2 
B --+ , ,+o(S-9). 

12- 4s (1+h)  s 

(2.7) 

It is to be expected from the nature of the method of reflections that increasing 
powers of s-l in these series are associated generally with increasing powers of A. 
It can be seen in particular from Jeffrey’s series that the terms shown in (2.6) and (2.7) 
are sufficient to give expressions for A,, and B,, correct to order h3 when h < 1 for a 
general value of s, viz. 

(2.8) I 
1 

A,, = 1 + h3( - ~ O S - ~ +  480rG - 9 6 0 ~ ~ )  + O(h4) 

B,, = 1 + h3( - 320s-*) + O(h4),  

and expressions for A,, and B,, correct to order A,, viz 

(2.9) 
A,, = (3s-l- Z S - ~ )  + h(4s-3) + h2( - 8 r 3 )  + O(h3) 

B,, = (gS-i+ 8-3) + A( - 28-31 + ~ y 4 ~ - 3 )  + o(h3). 

Likewise, in view of (2.4) and (2.6), A,,- 1 and B,,- 1 are of order h when h < 1,  and 
so All - 1 and B,, - 1 are of order A-l when h 

At the inner limit s -+ 2, the fact that an applied force parallel t o  the line of centres 
produces the same common velocity of two touching spheres (s = 2) regardless of 
which sphere it acts on gives 

I .  

(2.10) 
2 1 

A,,(2’ A) = - &(2, 4 = >A,,(2, 4. l + h  



384 G. K .  Batchelor 

Then standard lubrication theory shows that for two nearly touching spheres acted 
on by forces parallel to the line of centres 

(2.11) 

as ,$ + 0, where f; = s - 2; and it may be shown that All, A1,, A,, are separately linear 
in <when [ < 1. Simple lubrication theory does not give precise relationships between 
the values of Bll, B12, B,, and their derivatives a t  < = 0, but it may be shown that, 
near [ = 0, €ill, B,, and B,, are each of the form 

const.+O (Iogl[-l) - . (2.12) 

For future reference we note that when F, and F, represent gravitational forces 
denoted by 6nya, Ui‘) and 67r7a2 U p  respectively the relative velocity of the two sphere 
centres is 

V12(r) = U,-U, = 6n7a1Uio’. (b2,-b,,)+6n~a,U(,O). (b2,--bl2). (2.13) 

The relative velocity of two distant spheres is 

V(0) 12 - - U(0) 2 - U(0) 1 = (h2y - 1) Ui”, (2.14) 

where the reduced density ratio 
Y = ( P 2 - P M P 1 - P )  (2.15) 

may take positive or negative values. Then on substituting for the mobility tensors 
from (2.2) the expression for V,, becomes 

where 

V12(r) = Vl”,’. -L(s)+ I -- N(s)  , (7 ( .,:) ) (2.16) 

(2.17) 

(2.18) 

Note (i) that L and M are unchanged when h and y are replaced by h-l and y-l, and 
(ii) that when A = 1 both L and M are independent of y (because the relative velocity 
is then proportional to y - 1 a t  all separations). Near and far-field asymptotic forms 
for L(s) and M ( s )  may be found from those of All, Bll, etc. 

The above mobility functions also occur in the expression for the relative diffusivity 
tensor for two spheres (Batchelor 1976), essentially because the relative diffusive 
flux due to Brownian motion can be represented as a consequence of equal and opposite 
thermodynamic forces acting on the two spheres. The relative diffusivity tensor, 
which we shall need to make use of when determining the pair-distribution function, is 

D(r) = kT(bll+ b22 - b12 - b21) 

(2.19) 

where (2.20) 



Sedimentation in a polydisperse system. Part 1 

and 

l + h  (1+h)2' 
H ( s )  = 

It follows from (2.4) and (2.5) that 

G(s, A )  = G(s, h-'), H(s ,  A )  = H(s ,  h-l), 

and from (2.10), (2.11) and (2.12) that as t -+ 0 

385 

(2.21) 

(2.22) 

(2.23) 

By definition G -+ 1 and H -+ 1 as s -+ 00, and asymptotic developments of G and H 
correct to the order of s-8 (as s -+ 00) can be found from (2.6) and (2.7). 

Numerical values of some of the mobility functions for some values of s and of h 
have been available in the literature for many years, but computer-based calculations 
of the two-sphere flow field which will yield complete tables of values of A,,, A,,, BI1, 
B,, as functions of s for arbitrarily chosen values of h have been devised only recently 
(Adler 1981; Jeffrey 1982). The results of the calculation made by Jeffrey (1982) have 
been used in the numerical evaluation of sedimentation velocities to  be described in 
Part 2. 

3. The general formula for the mean velocity of the particles of one species 
In  the dilute dispersion under consideration the probability of more than one 

particle being found in the neighbourhood of a given particle is negligible. The inter- 
actions to be considered are thus those arising when a yarticle of species i acted on 
by a force Fi finds in its neighbourhood, a t  relative position r ,  a particle of species j 
acted on by a force Fi. The forces Fi and F, include not only the applied gravitational 
force but also a mutual interparticle force which depends on r and tends to zero as 
r -+ 00. The additional velocity of the particle of species i due to the presence of the 

where the superscript (0) indicates the value for large separations, that  is, for a 
pariicle effectively in isolation. Only gravity contributes to Fie). 

It is intuitively evident that the mean additional velocity of an i-species particle 
due to the presence of other particles in the suspension involves an integral of an 
expression like (3.1) over all positions of the particle of species j with the pair- 
distribution function nipij(r) as a weighting factor. There is however the difficulty, 
of a type now familiar in the literature of suspension mechanics, that the mobility 
functions A,, and B,, contain terms of order r-l and r3 in their expansions in powers 
of r-1 for r large (see (2.7)) and so such an integral of the expression (3.1) is not con- 
vergent. Ways of overcoming the difficulty are known, and a formula involving only 
absolutely convergent integrals over all pair interactions has been derived for the 
mean sedimentation velocity in a monodisperse syst,em (Batchelor 1972). Later this 
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formula was generalized, in the context of a calculation of Brownian diffusion of 
particles down a concentration gradient, to the case of polydisperse systems (Batchelor 
1976). Only the situation in which the forces F, and F, are independent of r was con- 
templatedin that paper, but it is not difficult to see how the formula should be amended 
to allow for non-uniformity of Fi and F,. 

From equation (7.5) of this latter paper (to which reference should be made for the 
interpretation of the various terms in (7.5)) we see that the mean additional velocity 
of a particle of species i due to pair interactions with particles of species j may be 
written as 

{&,.Fa+ b,,.F,-U$o))pi,(r)-u(xI x+r,aj) 
r>aj 

- &afV’fu(x I x + r, u j ) }  dr - 1 - q5j Ujo), (3.2) 

where u(x I x + r, a,) denotes the velocity a t  point x in the fluid given that the centre 
of a sphere of radius aj on which the force Fie) acts is located at  point x + r, and 

( 2j) 

It follows from the known expression for the fluid velocity distribution due to a single 
moving sphere that 

u(x 1 x+r,uj)+&z:V:u(x I x+r,aj) 

where 1 is the unit second-rank tensor. Then on substituting the expression (2.2) for 
b,, and b,, (with a, and a, replaced by a, and ui respectively) in (3.2),  and remembering 
that p,,(r) = 0 when r < a,+a, 

for the rigid spheres considered here, we find for the change in mean velocity of a 
particle of species i due to pair interactions of all types 

and h = aj/az, s = 2r/(a,+aj) .  
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The convergence of the integral J‘ is evident from the asymptotic forms for A,, and 
B,, given in (2.6); that of the integral J“ is assured by the asymptotic form of pi, 
found later; and that of Kij is a consequence of the rapid decrease to zero, as s -+ 00, 

of the non-gravitational forces on the particles. 
The right-hand side of (3.4) is linear in the forces F,, Fj, for a given pair-distribution 

function, and it is convenient to recognize the separate contributions made by gravity 
((AU,)(@) and by interparticle forces on the two spheres. The expression of {AU,) 
in terms of the three integrals in (3.4) anticipates this decomposition. 

When Fi and F, represent gravitational forces, and so are independent of s, we have 

On the other hand, when Fi and Fj represent mutual interparticle forces which 
tend to zero as r -+ 00, we have 

F, = -Fj, = Fii(r) say, and Fie) = -F$o) = 0, 
and 

The notion of interparticle forces causing a mean drift of the particles of one species 
may seem strange a t  first sight. A mean drift would of course be impossible in the 
familiar case in which the pair-distribution function is spherically symmetric, since 
F,,(r) = -Fij( -r) and the integral in (3.9) is then zero; but, as we shall see later. 
the pair-distribution function is in general unsymmetrical about a horizontal plane 
through s = 0 in a polydisperse sedimenting system, and a mean drift of particles of 
one species may then occur. 

In  the particular case of a central interparticle force derivable from a potential cDi, 
which is a function of r alone (e.g. a van der Waals force), we have 

2 SdcD,, Fi, = -VxicDij(r) = --- 
ai+ais ds ’ (3.10) 

and the corresponding contribution to  (AU,) is seen from (3.4) and (3.9) to be 

We shall see later that the relative diffusion of the two particles due to Brownian 
motion is equivalent in its effect on the particle motions to a steady interparticle force, 
FiF) say, which in general is not directed along the line of centres. The corresponding 
contribution to (AU,) is obtained by replacing Fii by FiF) in (3.9), and will be con- 
sidered in § 5.  

It should be noted that the casej = i is included in the summation in (3.4). Since 
pii (r)  = pii( - r) there is no direct contribution to (AU,) due to interparticle forces 
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between two particles of species i. The te rmj  = i in the summation in (3.8) giving the 
contribution from gravitational forces is 

ss !& 471 UP) .I 8 2  2 [((All + A12) + (Bll + B12) (I  - ;) - I )  A = l  P,,(s) 

- [: (I + y) + & (1 -%))I ds - 554ul'). (3.12) 

I€pii is assumed to be unity, as was done in the previous investigation of sedimentation 
in a monodisperse system (Batchelor 1972), this becomes 

#iU$o) (12m (All + 2B11 - 3 +Al2 + 2B12 - 3 ~ - l ) ~ , ~  s2ds - 5 , I (3.13) 

and the value of the integral was found in that paper to be - 1.55. 
Since Up) and Uy) are parallel to g, and the pair-distribution function p i j ( s )  is 

necessarily symmetrical about the direction of g, the change in mean velocity of the 
particles of species i given by (3.4) is a vector parallel to UL'), as anticipated in (1.5). 

4. The pair-distribution function 
We come now to the other aspect of the problem, viz that concerned with the 

statistical structure of the dispersion. As a result of the singular circumstance that 
two identical spheres moving under gravitational forces alone have zero relative 
velocity at all relative positions in the fluid, the pair-distribution function for spheres 
in a dilute monodisperse system has the same form as in the absence of gravity; it is 
thus then the same as in the case of what the colloid scientists call structural equili- 
brium and is given immediately by the Boltzmann distribution for an equilibrium 
system. But in a polydisperse system the relative motion of the two spheres due to 
gravit,y causes non-uniformity of the pair-distribution function. Moreover it does so 
in a way which is not equivalent to the action of an interparticle force derivable from 
a potential, and so although there may be a statistically steady state we no longer have 
an equilibrium system to which the Boltzmann distribution is applicable. It is neces- 
sary in these new circumstances to obtain the pair-distribution function as the solution 
of a conservation equation of Fokker-Planck type?, as was done in the calculation of 
the effective viscosity of a suspension of (identical) spherical particles subjected to a 
deforming motion (Batchelor & Green 1972; Batchelor 1977). 

t Colloid scientists have tended either to overlook this need or to dismiss it on the grounds 
that usually they are considering systems in which effects of convection are weak relative to 
those of Brownian motion (see, for instance, Peterson & Fixman 1963, Reed & Anderson 1976, 
and Dickinson 1980). In a sedimenting system, effects of motion due to gravity on the pair- 
distribution function are not always small in practice; and even when convection effects are 
dominated by those of Brownian motion, and the departure of the pair-distribution function 
from the Boltzmann distribution is small, this perturbation of the pair-distribution function is 
nevertheless the source of a non-negligible contribution to the mean velocity of particles in a 
polydisperse system. Solving the Fokker-Planck equation for the pair-distribution function is 
normally an unavoidable part of the investigation of properties of a dynamical system not in 
thermodynamic equilibrium. 
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4.1. The dijerential equation for pii 

For this differential equation we shall need to know the velocity of the centre of a 
particle of speciesj relative to the centre of a particle of species i when the two particles 
are moving under the action of the specified gravitational and interparticle forces in 
fluid at  rest at  infinity. For the relative velocity Vij(r) due to gravity alone we have 
the expression (2.16) (in which a, and a2 should be replaced by ai and a j ,  and p1 and 
p2 by pi and pi ) .  The contribution to the relative velocity due to a central interparticle 
force V, Q i j ( r )  acting on the particle of species i and a corresponding force - Q, aij(r) 
acting on the particle of speciesj is 

which can also be written (as we see from (2.19)) as - DSj. V ( @ c i / k T ) ,  where Dii(r) 
is the relative translational diffusivity of i and j particles. The total relative velocity 
due to deterministic forces is thus 

On taking account also of relative diffusion we find that the differential equation 
expressing the conservation of pairs made up of a sphere of species i and one of species 
j is 

8pij/8t = - V . (Vi jpi j )  + V . (pii Dij. V (  @ij /kT)}  + V . (Dii .  Vpij). (4.2) 

The terms of this linear equation for pii that are most important, through being 
non-zero over a wide range of values of r, are the gravitational ‘convection’ term 
-V . (Viipii) and the diffusion term V . ( D i j .  Vpii). A representative value of the 
ratio of the magnitude of these two terms is the Ptclet number 

where Vfj) and denote (magnitudes of) the values of Vii and Dii for a widely 
separated particle pair and are given by (2.14) and (2.20) respectively. Note that, for 
givenh,9ijisproportional to (ac -I- aj)4. For the particular caseai = 0.5pm, ai = l.Opm, 
pi = p j  = 2p, and with water as the suspending fluid we find gii = 1.5 at normal 
temperatures. Since values of ai between 0.01 pm and 10 pm occur in practice it is 
clear that both large and small values of &Pii will be relevant. 

The ratio of magnitudes of the term in equation (4.2) representing the effect of the 
interparticle force and the diffusion term is measured by 

@$)/kT, 

where @$) is a representative value of the force potential Qij. Effects of the inter- 
particle force are often unimportant unless the gap between the spheres is small 
compared with each of the sphere radii. 

The ‘convection’ term on the right-hand side of (4.2) can be written as 

- vii . vpii  -piiv . vii, 
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of which the first term represents a true convective rate of change of pi i  and the 
second is a ‘source’ term resulting from compression of the continuum in r-space 
representing probability density of sphere pairs. The source strength is proportional 
to V . Vij, which we find from (2.16) to be given by 

where, on changing to the dimensionless variable s = 2r/(ai + a j ) ,  

2 ( L - M )  dL +-. 
as 

W ( s )  = 
S 

(4.4) 

This function W ( s )  plays an important part in the calculation of pii(r): and we note 
here for future use that its asymptotic development as s -+ co, obtained from (2.17)) 
(2.18)) (2.6) and (2.7)’ is 

12 000A3(yA3 - 1) 
W ( s )  = + - 80) + (1 + A)’ (yh2 - 1) 88 

100(yh4- 1)+63(y-A4)-405(y-  1 ) A 2  +o(s-lo), (4.5) 
( 1 + 64A3 A)* 89 ( yA2- 1 I + 

where h = uj/ui and y = (pi -p) / (p i  - p ) .  

condition 
We shall seek a steady-state solution of equation (4.2) satisfying the boundary 

pij(r) + 1 as r --f 00, (4.6) 

and a condition expressing the fact that the radial flux of sphere pairs is zero a t  the 
inner boundary r = ai + a j .  Contributions to the flux of sphere pairs in r-space are 
made by the relative velocity (4.1) and by diffusion, and the total flux is 

(Vij - Dij . V(@ij/kT)}pij - Dij . Vpij. 

Now r . Vij --f 0 as r J. ai + a j ,  in consequence of the rigidity of the spheres. The inner 
boundary condition is thus 

r . Dij . {V(QDij/kT)pij + Vpij} = 0. (4.7) 

It will be noted from (2.23) that, as another consequence of sphere rigidity, 

r .  Dij - r-(ai+ccj) as r $ a i + a j ;  

and so, in cases in which the limiting value of IVQij) as r J. ai + ai is finite, the condition 
to be satisfied a t  r = ai + u j  reduces to 

r .Dij .Vpij  = 0, (4.8) 

and imposes a restriction on the rapidity with which pij varies near r = a, + ai. 
At large values of the Ptclet number the diffusion term in (4.2) is negligible by 

comparison with the convection term over a large region of r-space. In  that event, the 
order of the differential equation for pii in this region is one less, No inner boundary 
condition need be imposed on the solution of the equation in these circumstances. 
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Aside from the gravitational force in the expression for Vii(r) there are no direc- 
tional influences on the solution of (4.2).  The solution satisfying the above boundary 
conditions will therefore be axially symmetric about the direction of g. 

We now investigate steady-state solutions of (4.2) in certain limiting or special cases. 

Large Pdclet number and Qij = 0 

Larger values of Pii u ill usually occur in practice as a consequence of ai + ai being 
larger, and for such particles the range of action of the interparticle force may be a 
very small fraction of ai + a j .  We shall neglect the effects of interparticle forces and of 
diffusion here. The resulting expression for the pair-distribution may consequently not 
be accurate a t  values of r very near r = a$ + aj .  

1 and Qii = 0 for r > ai+ai the equation for the pair-distribution 
function is approximately 

When Yij 

%+ v . (V i jp i j )  = 0. 
at (4.9) 

(Retention of the time derivative creates no additional difficulty in this particular 
case.) This equation can be solved by the same kind of procedure as was used in the 
case of a dispersion of (identical) force-free spheres in a bulk linear deforming motion 
at high Ptclet number (Batchelor & Green 1972). We note from (4.3) and (2.16) that 
V . V,; can be written as 

‘ I  

where 

r . Vij  dq(r) 
rq dr ’ 

v.vij = --- 

and so (4.91 becomes 

(4.10) 

(4.11) 

(4.12) 

Thus pii(r, t ) / q ( r )  is constant for a ‘material’ point on a trajectory in r-space. In  the 
case of a trajectory coming from infinity, where p i j  = 1 ,  the value of that constant 
is l /q(oo) and so we have 

P i j W )  = 4(r)/q(m), (4.13) 

a t  all points on that trajectory and thence a t  all points on all such trajectories. In  the 
case of a trajectory which does not extend to infinity, (4.12) still gives the relation 
between the values of pii a t  any two points on the trajectory, but the relation between 
the values on two different trajectories is not determined by equation (4.9). 

The occurrence of trajectories of finite length has been investigated by Wacholder 
& Sather (1974). They found that for each value of h there is a range of values of y 
for which some of the trajectories do not extend to infinity (except for h = 1, when 
the range contracts to zero). One bound of the range of values of y for which some 
of the trajectories are finite is given by y = (this being the value for which two 
widely separated spheres have zero relative velocity). The other bound varies with 
h in a way which is known only numerically and is given crudely by y = h-l. In  the 
important practical case of spheres of uniform density ( y  = l ) ,  and for any value of 
A, all the trajectories extend to infinity. For finite trajectories to exist, the smaller of 
the two spheres must have a larger density. 
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When some of the trajectories in a flow field are finite, it is necessary to include the 
effect of relative diffusion of the two spheres (or perhaps the effect of three-particle 
interactions in certain circumstances) in the governing equation in order to  make the 
pair-distribution function fully determinate. The effect of a small diffusivity here has 
a singular perturbing effect (exactly as in the case of steady simple shearing motion 
of a suspension of force-free spheres a t  large PCclet number), and the required analysis 
will not be straightforward. Since sedimenting systems in which some of the trajec- 
tories are finite are not typical, we shall set this problem aside and consider the high- 
PCclet-number form of the pair-distribution function only for cases in which all the 
trajectories extend to infinity and (4.13) consequently holds a t  all relative positions 
of the two spheres. 

On returning to (4.11) and (4.13)) we find 

(4.14) 

which has the note-worthy property of depending on the separation magnitude s 
alone. A spherically symmetric pair-distribution function is generated, despite the 
directional character of the sedimentation of two spheres, essentially because r . Vii 
and V . Vtj have the same dependence on the direction of r, exactly as in the case of 
the pair-distribution function for a dispersion of force-free spheres in a bulk linear 
deforming motion. The solution (4.14) for the pair-distribution function in the absence 
of Brownian motion and interparticle force has also been obtained recently, by the 
same method, by Feuillebois ( 1  980) in an investigation of sedimentation of rigid 
spheres of the same size (L  and M ,  and hence also W and pzi,  being independent of y 
in this case) and by Haber & Hetsroni (1981) in an investigation of sedimentation of 
liquid spheres having different sizes but the same density and a different internal 
viscosity from that of the suspending liquid. 

The asymptotic form for p i j  (for s $- 1)  may be found from that for W ( s )  given in 
(4.5) and that for L(s) obtainable from (2.7) and (2.8), and to the order of sV6 is 

In  the important case y = 1, the first two non-uniform terms in (4.15) vanish and 
p i j  - 1 falls off rapidly, as s-~, when s + I. 

At the other end of the range of values of s, near s = 2, All, A1,, A,,, and so also L, 
are each linear functions of f: (where f: = s - 2), and Bll, B12, B,,, and so also M ,  are 
each linear functions of (log(-l)-l (see (2.11) and (2.12)). Also, it follows from (2.10) 
that L = O(f:) near 6 = 0, whence we find from (4.14) that 

const. 
pij ,gz(logp)” (4.16) 

near 6 = 0, where x and y are determined by the constants in the asymptotic forms 
(as f: -+ 0) of All, A1,, A,, and BI1,  BIZ, B,, (and 2 is usually positive). The singularity 
in p i j  a t  6 = 0 revealed by (4.16) is similar to that found for the case of a dispersion of 
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force-free spheres in a bulk pure straining motion (Batchelor & Green 1972), although 
there is no reason to  suppose that the values of x and y are the same. 

It is evident that  (4.16) cannot be a valid approximation at all small values of 6 
because the neglected diffusion term in (4.2) is in fact of larger order, by one power of 
[-l, near [ = 0 if pii has the form (4.16); nor does (4.16) satisfy the inner boundary 
condition (4.8).  Thus diffusion cannot be neglected near the inner boundary, and 
there exists a ‘boundary layer’ in which effects of convection and diffusion are of 
comparable magnitude. It is a boundary layer with more than the ordinary mathe- 
matical complexity, because the radial diffusivity varies as [ and the distribution of 
pii outside the boundary layer with which a match must be made, viz. (4.16), is itself 
singular a t  [ = 0. No analysis of this boundary layer has been made, but it is clear 
that  the effect of diffusion must be to  transfer sphere pairs away from the inner 
boundary and so to  reduce the magnitudes of pii and apij/ar near [ = 0. It seems 
likely, from order-of-magnitude estimates of the convection and diffusion terms near 
6 = 0,  that the boundary layer thickness is of order (ai + a j )  B;l. 

4.3. The limits h --f 1 ,  y --f 1, D$) --f 0 (with Oi j  = 0) 

On taking these three limits we arrive a t  the case of a dispersion of spheres identical 
in radius and density sedimenting with zero diffusivity of the spheres due to Brownian 
motion. It appears however that the pair-distribution function corresponding to this 
multiple limit is not unique, and depends on which of the three limits is taken last. 
It is worth-while to examine the different limiting forms of p i j ( r ) ,  because they are 
relevant to  practical situations in which one of the three limits is realized less perfectly 
than the other two. 

Take first the case in which the limit D$) -+ 0 is taken last. This may be regarded 
as a mathematical description of an accurately monodisperse system sedimenting with 
a small but non-zero diffusivity of the spheres. When h = 1 and y = 1 we have Vij = 0, 
and so the equation (4.2) for the steady-state pair-distribution function (with neglect 
again of the interparticle force) reduces to 

V . (Dij. Vpii) = 0. 

The solution satisfying the condition of zero radial flux a t  the inner boundary is 

pi j ( r )  = 1 for r > a,+aj, (4.17) 

regardless of how small D$) may be. This$ of course the solution for dominant 
Brownian motion - dominant here because of the circumstance that the convection 
term is zero for identical spheres. This solution was adopted in the previous calculation 
of the mean sedimentation velocity in a monodisperse system (Batchelor 1972). 

Suppose now that the limit y --f 1 is taken last. If we put D$) = 0,  the equation for 
p i j  reduces to (4.9), and since when h = 1 all the trajectories extend to  infinity the 
solution is given by (4.14). And if h = 1 we see from (2.17) and (2.18) (and some use of 
(2.4)) that 

(4.18) 

The pair-distribution function is thus independent of y ,  and it is unnecessary to take 
the limit y --f 1.  The function p i j ( r )  has been calculated for this case by FeuiHebois 
(1980) using the known values of the functions All(r), A12(r),  Bll(r) ,  BIB(r) for A = 1. 

L(r) = ( 4 1  - AlB)h=l, M ( r )  = (BIl - BlB)h=l. 
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The effect of varying y here is to vary the speed with which one of the two spheres 
moves relative to the other along its trajectory but not to change the trajectory itself. 

Finally, suppose that the limit h --f 1 is taken last. With I)$? = 0 the equation for 
pii is again (4.9) and since when y = 1 all trajectories extend to infinity the solution 
is again (4.14). Now in the neighbourhood of h = 1 we may put 

A,,(h) = + -- 1 )  (aAll/ah)A=l+ O((h  - 1)2),  

&(A) = All(l)-(A-1)(aA,,/ah),=,+O((h- 1)2), 

and, in view of the relation (2.4), 

and similarly for B1, and BZ2. We then see from (2.17) and (2.18) that when y = 1 

A = l  

limL(r) = 

(4.19) 

and these functions of r must be substituted in the expression (4.14) for pi i .  The 
trajectories have different shapes in the two cases h = 1, y --f 1 and y = 1, A -+ 1, and 
this is the essential reason for the different forms of the pair-distribution function in 
the two cases. The existence of the difference between these two limits is obvious when 
the asymptotic form (4.15) is considered. 

This third case in which the limit h -+ I is taken last provides a mathematical 
description of a dispersion of spheres of accurately uniform density and a small 
variation of radius sedimenting a t  high PCclet number. The variation of radius must 
not be too small, because it would be difficult then to satisfy in practice the condition 
of high PCclet number (since identical spheres have zero relative velocity). We can 
see the practical limitations by considering a dispersion of equal-density spheres, 
some of which have radius u and some radius u+6u, where 6u < a. The difference 
between the free-fall speeds of the two types of sphere is 

where U, is the free-fall speed of either type of sphere, and so the PCclet number for 
pair interactions involving one sphere of each type is 

2a U, Su g=-- 
Do a ’  

(4.20) 

where Do is the relat.ive diffusivity at large separations. For particles of relative 
density 2 gm/cm3 in water or of density 1 gm/cm3 in air a t  room temperature we have 

SU 
9 = 1 6 - ( ~ p m ) ~ ,  U 

showing that for a size variation of 10 percent the PCclet number is large (i.e. 10 or 
more) for particles no smaller in radius than 1.6 pm. We also see incidentally that for 
particles of radius 1 pm a size difference of a few percent is sufficient to give 9 a 
value of about unity, which suggests that in an experiment with a supposedly mono- 
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disperse system the pair-distribution function might not have the form (4.17) appro- 
priate to exactly identical spheres. It is evidently important to have accurate obser- 
vations of the size variation in dispersions of spheres of radius 1 pm and above. 

It might happen that a dispersion contains two species of particle which differ 
slightly in radius and in density. Provided that A -  1 and y -  1 are not so small that 
the PCclet number is not large there is then the question, will the pair-distribution 
function be closer to that found from (4.14) with (4.18) (which assumes h = 1 )  or to 
that found from (4.14) with (4.19) (which assumes y = 1 )  ? Inspection of the asymptotic 
form for pij in (4.15) suggests that a simple comparison of the magnitudes of h - 1 
and y - 1 would enable a decision to be made. 

The recent workof Haber & Hetsroni (1981) on sedimentation in a dispersion of liquid 
spheres of different sizes but having the same density and zero Brownian diffusivity 
shows yet another way of approaching the limit of identical rigid spheres with zero 
Brownian motion, although this is not a new limit. These authors found that when 
h = 1 (and y = 1, D$) = 0) ,  taking the limit in which the viscosity of the two interacting 
droplets (yl) approaches infinity gives a pair-distribution function different from unity 
(and they supposed that there was consequently some doubt about the validity of the 
assumption, viz. pij = 1, that I made for a monodisperse system in 1972). But in fact 
the only consequence of changing yl/y is to change the mobility functions All, Bll, . . . , 
and the limit operations yl/y -+ co and h --f 1 commute. The limiting value of pij(r) 
found by these authors by putting h --f 1 and yl/y --f co in that order is thus the same 
as that found above by putting y = 1, D$) = 0, h -+ 1. (The asymptotic form forpij 
given by Haber & Hetsroni does not actually agree with the form taken by (4.15) 
when y = 1 and h -+ 1, but that is because their mobility functions appear to be 
incorrect. ) 

4.4. Structural equilibrium 

When the spheres are truly identical, both in density and in radius, the relative 
velocity of two isolated spheres due to the gravitational forces on the spheres is zero 
and the convection term disappears from equation (4.2). I n  these circumstances re- 
tention of the effect of interparticle forces presents no difficulty. The steady-state 
solution of (4.2) that satisfies the outer boundary condition (4.6) and the inner boundary 
condition (4.8) is then the equilibrium or Boltzmann distribution 

pij(r) = exp { - Qij(r)/kT}. (4.22) 

Thus a t  relative sphere positions near r = ai + a j  where Qi j  < 0 (the value of Qij  at 
large r being zero) there is an excess density of sphere pairs and at  positions where 
Qij  > 0 there is a deficiency, with consequences for the mean speed of fall of particles 
which are qualitatively evident from the fact that two identical spheres fall more 
quickly when they are close together than when they are far apart. 

There is also an approximation to equilibrium in a region of strong interparticle 
force near r = ai+aj when the i and j spheres are not identical. Inspection of the 
various terms in (4.2) suggests that if Qij  is changing rapidly in a (small) range of 
values of r near r = ai + a j  the full equation (for arbitrary values of A, y and Y<j) can 
be satisfied only if the radial gradient ofpi j  is also of large magnitude. In  that event 
equation (4.2) reduces approximately t o  

(4.23) 
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Integration and use of the condition of zero flux of sphere pairs &crow the inner 
boundary then gives 

P i j W  = F(8,  4)  exp { - @ i j W W  (4.24) 

near r = ai + aj ,  where 8, 4 are polar and azimuthal co-ordinates of r,  corresponding 
t o  a locally valid Boltzmann distribution in a region where the effects causing a de- 
parture from equilibrium are relatively weak. 

The function F(B,4)  is presumably determined by some kind of matching of this 
solution with that valid outside the region of strong interparticle force. However, it 
will not be a simple matching process, because a t  values of r such that (4.24) approxi- 
mates to its asymptotic value F(8 ,  $) the radial gradient of the expression (4.24) is 
no longer large and (4.23) is not a valid approximation to the full equation. 

4.5. Small Pdclet n u m b e r  
In  this case $(ai + a j )  V$!)/D$) < 1 and the convection term in (4.2) is in general small 
compared with the diffusion term. Thus the governing equation reduces approxi- 
mately to (4.23) and we recover again the Boltzmann distribution (4.22). (The solution 
(4.24) holds over a wide range of values of r in this case and the constant F must be 
assigned the value unity to satisfy the outer boundary condition.) We shall investigate 
here an imgroved approximation to p i j ( r )  which takes some account of the effect of 
convection in a steady state. It will be seen later that  a knowledge of this improved 
approximation is needed for the correct prediction of the mean speed of sedimentation 
of each particle species in the limit Pij + 0. 

The appropriate form of perturbation of the Boltzmann distribution at small values 
of Pij is 

p i j ( r )  = exp{ - Q i j ( r ) / k T ) { l  + P i j p $ ( r )  + O(Pij)>. (4.25) 

If we substitute this expression for pii in the (steady-state form of) equation (4.2) 
and neglect terms of order 9iti we are left with 

PiiVr . ( e - W k T  Dij . Vrp$)) = 0, . (Vij  e-%'kT). (4.26) 

The scalar function &)(r) is evidently axially symmetric about the vertical direction, 
and we try the form 

(4.27) 

On substituting in (4.26), and using the expressions for Dij, Vij and V . Vij given in 
(2.19), (2.16) and (4.3) respectively, we find after some straightforward working that 
(4.26) is satisfied by this expression for pi;) provided &(s) is a solution of 

r . V$) 
r V$:) p$) ( r )  = - Q(S). 

where G, II, L and W are all scalar functions of s and A ,  and L and W also depend on y .  

Q - + O  as ~ 3 0 0 ,  

The outer boundary condition to be imposed on Q is 

and the inner boundary condition (4.8) reduces to 

GdQ/dr= 0 a t  s =  2. (4.29) 
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At small Ptclet number the applied forces Pio) and FjO) represent perturbations of 
an equilibrium system dominated by Brownian and interparticle forces, and we may 
expect that p i j  is a linear function of both Fl0) and Fj'". This linearity is obscured here 
by the inclusion of the factor h2y - 1 in the definitions of the scalar functions L and M 
specifying the relative velocity of the two spheres (see (2.17) and (2.18))) but it may 
be seen that (h2y- 1) L and (h2y- 1 )  W are linear functions of y and hence that 
(h2y - 1) Q, where Q(s) satisfies the above equation and boundary conditions, is 
linear in y. Thus the perturbation term in (4.25) is alinear fiinction of y ,  or, equivalently, 
a linear function of Fie) and FF) as expected. 

Leaving aside the factors in (4.26) containing Qij ,  which are significantly different 
from unity only when the gap between the two spheres is very small, (4.26) or (4.28) 
is essentially a pure diffusion equation, made more complicated than the usual type 
by the diffusivity being different for the radial and transverse directions and being a 
function of r. The right-hand side represents a source, which owes its existence to  the 
fact that  the relative trajectories are not volume preserving (i.e. V . Vtj + 0) .  The 
function W ( s )  representing the magnitude of V . V i j  varies as sF5 a t  large values of s 
in general, and as s-7 in the particular case y = 1 (see (4.5)), and the particular integral 
of (4.28) is correspondingly of order s - ~  in general and of order s - ~  for spheres of equal 
density. Both G and H approach unity as s --f co, and the complementary function 
for Q is of order s-2 when s B 1,  as would be expected for a solution with the dipole 
structure (4.27). For further information about Q(s)  it will be necessary to solve (4.28) 
numerically. 

It has been seen that the pair-distribution function is spherically symmetric in both 
limits, gii --f 00 and gii --f 0, although for quite different physical reasons (and in the 
case ggj 3 co the spherical symmetry was established only when Qij = 0). The depar- 
ture from spherical symmetry is small in the case Pij < 1 because diffusive smoothing 
is then strong, and it is small in the case gij 9 1 (with Qij = 0) owing to the circum- 
stance that V . V i j  has the same dependence on the direction of r as r . V i j .  There is 
no reason to expect that a t  a general value of Pij the departure from spherical sym- 
metry will be small (although p i j ( r )  is necessarily symmetrical about the direction 
of g). 

4.6. Pairs of spheres with very different radii or densities 
The cases h < 1 and h g 1 are of limited direct interest in practice, but analytical 
results may be obtained and will be useful as known end points to those found numeric- 
ally for different values of A. For the purpose of this subsection we shall suppose that 
interparticle forces have negligible effect when r - (a ,  + ui) is comparable with or 
greater than the smaller of the two sphere radii. 

When one of the two spheres has a relatively small radius, say h = aj/ai < 1, the 
gravitational relative velocity Vij is approximately the sum of Uio) - UiO) and the 
value of u + &a!jV2u a t  position xi where u is the fluid velocity due t o  the motion of 
an isolated bigger sphere with centre a t  xi .  Both these contributions to  V i j  have zero 
divergence. We see this explicitly from (4.5) which can be regarded as giving an 
asymptotic development of W for small values of h (for a general value of s) correct to 
order h2, just as (2.6) and (2.7), from which (4.5) was derived, yielded the asymptotic 
developments (2.8) and (2.9) correct to order A2 or better. Thus, when made non- 
dimensional by division by 2 Vi7)/(ai + a j ) ,  V . Vii is zero t o  order h2, for all values of r 
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except those for which r - (ai + a j )  is small compared with the small radius ai and for 
which the method of reflections on which (2.6), (2.7) and (4.5) are based cannot be 
expected to  give a convergent series. 

The equation for p i j  reduces in these circumstances to  

apij 
7 d t  i- V i j .  Vpi j  = V . ( D . Vpii) ,  (4.30) 

that  is, to the equation for convection and (non-isotropic) diffusion in an incompressible 
fluid, except a t  values of s - 2 small compared with A. There is now no source term, 
nor is any non-uniformity ofpgi specified by the boundary conditions, and sopij(r) z 1. 
Furthermore, since the term omitted from (4.30) is p,,V . V i j ,  and V .  V i j  (when made 
non-dimensional) is known to be of order A3 when h < 1, the solution of the full 
equation is 

p i j ( r )  = 1 + O(h3) (4.31) 

when h < 1, for a given value of Ptj. This holds a t  all values of the PCclet number. 
The asymptotic development of pii  in (4.15) for the case of large PCclet number is 
consistent with (4.31). 

By definition we have p i j ( r )  = p j i (  - r), that is, p i j ( r ,  y ,  A )  = p i j (  - r, y-l, A- l ) ,  
whence it follows from (4.31) that  

(4.32) p i j ( r )  = 1 + O(h-3) 

when A 
The limiting cases y -+ 0 and IyI -+ co are likewise worth consideration. It is 

necessary here only to  put y = 0 or + co in the expressions for L(s)  and M ( s )  in 
(2.17) and (2.18), and to use the resulting (finite) expression for W ( s )  in the calcula- 
tions of p i j ( r ) .  The order of the two limit operations y+O, h+m, is significant, 
since the products h2y and A3y occur in (2.17) and (2.18). 

1, for any given value of the Ptclet number. 

5. The direct contribution to mean particle velocities due to Brownian 
motion 

The asymmetry of the pair-distribution function about a horizont tl plane through 
r = 0 found explicitly in the case of small Ptclet number shows the existence of direct 
contributions to  the mean velocity of each species of particle due to  interparticle 
forces and to Brownian diffusion, and the latter contribution in particular warrants 
separate consideration. 

This asymmetry of pij(r) a t  small PCclet number can readily be seen to be a con- 
sequence of the combined effects of convection and diffusion repiesented in equation 
(4.2). Consider for example a case in which yh2 > 1 and the particle of speciesj falls 
downward relative to the particle of species i. The exclusion of the trajectories from 
the region r < a,+aj crowds the trajectories together over much of the upper half- 
space, corresponding t o  V . V i j  < 0 there, whereas in the mirror image system in the 
lower half-space the trajectories move apart from each other and V . V i j  > 0. The 
negative values of V . Vij in the upper half-space and positive values in the lower 
half-space act as a diffusive source and sink respectively, giving the whole distribution 
of p i i ( r )  the character of diffusion from an upwardly directed dipole source a t  the 
centre of the field. The diffusive effects are dominant a t  small PCclet number, and 
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negligible a t  large Ptclet number (when the pair-distribution function a t  any point 
is determined solely by the values of V . Vij on the trajectory through that point, and 
is spherically symmetric if all the trajectories come from infinity), and a t  finite PCclet 
number we must expect to find larger values of pZj in the upper half-space than in the 
lower half-space. 

The flux of a particle of species j (or i) relative to a particle of species i (or j) that 
results from diffusix-e lerelling thus in general has a vertical component which is 
mostly downward (or upward). The steady-state gradients of p i j  are of course feeble 
in the case of small Ptclet number, but the product of a small gradient by the rela- 
tively large Brownian diffusivity is not a small quantity, as we shall see explicitly. 
The final step in the argument is to recognize that a relative flux of the two kinds of 
particle in a certain direction implies the existence of an absolute flux (i.e. a flux 
relative to the container walls) of each of the two species which must be taken into 
account in a calculation of mean particle velocities. 

We leave intuitive considerations now and make a precise calculation of the direct 
contribution to the mean velocity of the particles of species i due to Brownian diffusion 
(the indirect contribution being that resulting from the influence of Brownian motion 
on the pair-distribution function) for arbitrary values of A, y and the PCclet number. 

I n  a previous paper (Batchelor 1976) it was shown that if two particles with the 
labels i a n d j  are alone in infinite fluid and the joint probability density of the positions 
of their centres is 

P(x,, xj) = ninjpij(r), 

where r = xj-xi, then the diffusive flux of the spheres due to Brownian motion is 
the same as if spheres i and j move under the action of steady interparticle forces 
F$)(r) and - Fiy)(r) respectively, where 

a log P(X{)  x .) 
ax, 

FlF) = -kT = kT. V,logpij(r). 

Reference to  § 2 shows that when couple-free spheres i and j are acted on by forces 
FiB) and - F$B) the sphere i acquires the velocity 

b,, . FLF) - b,, . Fay) = kT(b,, - b12). V, logpij(r) 

(and there is a corresponding velocity of the sphere j, which in general is not equal 
and opposite). The mean velocity of a sphere of species i due to relative Brownian 
diffusion of i and j particles is now obtained by integrating (5.2) over all values of r 
with njpij(r) as a weighting function, as anticipate din 3 3 by the inclusion of a Brownian 
contribution to  the interparticle force Fij in (3.9). 

The specific Brownian contribution t o  the change in mean velocity of a particle of 
species i due to all pair interactions is thus 

nL 

(AUi)(B) = kT 2 %(ai + aj)2 nj/  (b,, - bl,) . V, p i j  ds.  (5.3) 
j = 1  .9> 2 

There is a t  first sight a difficulty here over the convergence of this integral. At large 
Ptclet number p i j  - 1 has been found to be of order s-* when s 9 I (see (4.15)), whereas 
a t  small Ptclet number the departure of pij from its equilibrium form is given by the 
solution of equation (4.28) and is of order s-2. Thus, since bll- b,, is of order so for s 
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large, it seems that the integral in (5.3) is not absoluteIy convergent as s -+ cc a t  small 
values of the Ptclet number. However, the difficulty is not a real one. Equation (4.28), 
and its vector parent (4.26), is an approximate form of the governing equation for 
p i j ( r )  in which the convection term Vij . V p i j  is neglected, and, like other such low- 
PCclet-number approximations to  convection-diffusion equations, is not valid for 
indefinitely large values of s. As s increases the second-derivative diffusion term in 
(4.2) ultimately becomes smaller than the first-derivative convection term, however 
small the Ptclet number may be, and the high-Ptclet-number form (4.9), in which 
only convection terms are retained, becomes the appropriate approximation to  (4.2) 
at sufficiently large values of s, the solution for p i j  - 1 then being of order s - ~ .  

It might nevertheless be thought that  the integral in (5.3) could not be evaluated 
for small PCclet numbers without a knowledge of the way in which p i i ( s )  - 1 changes 
a t  large s from the solution of (4.28), which is of order s - ~  and for which the integral 
is not absolutely convergent, to some different form of smaller magnitude resulting 
from convection effects, But that  problem also may be seen not to  exist by writing 

The asymptotic forms of All, A12, ... given in 3 2 show that V . (bll - blz) is of order 
8-5 for s large, and so the second integral on the right-hand side is convergent when 
the low-Ptclet-number approximation is used for p z j  - 1 .  The first integral may be 
transformed to the sum of two surface integrals, one over a surface ‘at  infinity’ 
which is zero because, as we have seen, p i j  - 1 is of order s - ~  when s is sufficiently 
large however smaIl the PCclet number may be, and the other over the sphere s = 2 
which is zero because 

-+0  as s - + 2  
in view of (2.iO). 

We may thus rewrite (5.3) as 

2 ( A i z  - - - - - ( 1  -piJ ds. (5 .5 )  
( l + h ) s  l + h  dA1zr ds s 

- 

At large PCclet number this direct contribution due to Brownian motion is small 
relative to the direct contribution due to gravity, and in any event the integral tends 
to zero as gij --f 00 because the pair-distribufion function is spherically symmetric 
in the limit. At small Ptclet number, 1 -pi j  is proportional t o  gii (for see (4.25)) and 
so (AUi)(B’ is proportional to  Vi? with a constant of proportionality of order unity. 
Thus a t  small Ptclet number (AUi)(U) is comparabIe with (AUi)(G), unless the value 
of yh2 is near to unity, in which case i t  is much smaller. These latter statements may 
be expected also to hold when the Ptclet number is neither small nor large. 

When I generalized the formula found for the sedimentation velocity in a mono- 
disperse system (Batcheior 1972) to  the case of a suspension of particles of different 



Sedimentation in a polydisperse system. Part 1 401 

size for use in a discussion of down-gradient diffusion in a polydisperse system (Batche- 
lor 1976), I overlooked this direct contribution to (AU,) due to Brownian diffusion. 
The omission will be made good in a later paper on diffusion in a polydisperse s y w m  
(Batchelor 1982). 

6. Specific formulae for the sedimentation coefficient 
We now bring together the results of $33-5 in order to obtain formulae for the 

mean velocity of the particles of species i in the various limiting or special cases for 
which the pair-distribution function was investigated in $ 4. The final results will be 
expressed in terms of the sedimentation coefficient Sij defined by (1.5). Except where 
the contrary is stated, the formulae allow for the effects of three different forces acting 
on each particle: (a )  the gravitational force, which gives an isolated particle the 
velocity Uio) and a pair of isolated particles the relative velocity Vij(r), ( b )  the inter- 
particle central force represented by the potent'ial Qij(r), and (c) the effective Brownian 
interparticle force F$T)(r) described in $ 5 .  All three make (additive) direct contribu- 
tions to the change in the mean particle velocity (AU,), and so to the sedimentation 
coefficient, as indicated by the notation 

Sij = fly) + S$j) + Sp. (6.1) 

And all three have a further indirect effect on the mean particle velocity through their 
influence on the probability distribution of the relative position of two particles. 

For the direct contribution to (AUi) due to gravity we have the expression (3.8). 
To convert this to  a cont'ribution to we note that, sincepij(r) is symmetrical about 
the vertical axis, each of the tensors J' and J"  given by (3.5) and (3.6) has one of its 
principal axes in the vertical direction, whence 

For the interparticle-force contribution (AUi)(l) we have the expression (3.1 l) ,  and 
again the symmetry of pij(r) about the vertical may be invoked to justify retaining 
only the vertical component of (3.11), whence 

and, on using the explicit expressions for Pij and 08) (see (2.20)), 

For the Brownian-diffusion contribution (AU,.)(B) we have the expression (5.5). 
The symmetry of pij(r) about the vertical shows that only the vertical component of 
(5.5) is non-zero and hence that 

__ (1-pij)ds. (6.4) 
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Evaluation of the integrals in (6.2)-(6.4) requires a knowledge of the pair-distribu- 
tion function, and this is available only in the special cases considered in 9 4. 

6.1. Large Pdclet number and Qci = 0 

Here all effects of interparticle forces are being ignored (as may be permissible when 
the large value of the PCclet number is a consequence of large size of the particles). 
The effect of Brownian diffusion on the pair-distribution function is negligible, except 
perhaps when s- 2 < 1, and the expression (4.14) found for p i i ( s )  is spherically 
symmetric. In  these circumstances (AUi)@) is zero, as explained a t  the end of the 
previous section. Thus the only contribution to the sedimentation coefficient is A!$:), 
given by (6.2). The integration over the surface of a sphere of radius s in the expressions 
(3.5) and (3.6) can be carried out, giving J' and J" as proportional to the unit tensor 1. 
The sedimentation coefficient is then 

where h = aj/ai, y = ( p i - p ) / ( p i - p ) ,  s = 2r/(a,+aj). 

The pair-distribution function to be substituted in (6.5) is given by (4.14). All, AI2, 
B,, and B1, are all functions of s and A, and the quantities L and M on which p i j  
depends are functions of s, h and y (see (2.17) and (2.18)). When h = I, L and&!, and 
hence also p i j ,  do not depend on y, and we see from (6.5) that  Sii is a linear function 
of y in this particular case. 

6 .2 .  Identical spheres 

This case is relevant to sedimentation in a polydisperse system since some of the pair 
interactions involve two particles of the same species. There is no effect of ' convection ' 
on the pair-distribution function in this case, and pii  is given by the Boltzmann 
distribution (4.22). The direct contribution to (AU,) due to the interparticle force is 
zero for a pair of identical particles, for which p i j ( r )  = pii(  - r), as remarked in $3 ,  
and (AUi)(B) = 0 for the same reason. Hence, since p i j  is spherically symmetric, the 
sedimentation coefficient is again given by (6.5) (with h and y put equal to unity). 
The suffixes i a n d j  are now redundant, and 

= -6~55+~2m(A,1+2B11-3+A,,+2B, , )A~1{exp( -(D/kT)- l)s2ds (6.6) 

on using the known numerical result for the integral in the case Q = 0 (Batchelor 1972). 
Values of the sedimentation coefficient for a monodisperse system have been cal- 

culated for representative forms of the interparticle potential function @ ( r )  by several 
authors, to be referred to in Part 2 when further such calculations are being described. 

Often the interparticle force potential Q is different from zero only when s - 2 is 
small, and in such cases a useful approximation to (6.6) may be made. According to 
the data for the two-sphere mobility functions with h = 1 (Batchelor 1972)?, 

t In table 1 of this paper A, denotes A,,  + A,,  and A, denotes B,, + B12. Note incidentally 
the misprint in the heading to the last column of the table where 1 + ( r /a)  should be 1 + ( U / T ) .  
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A,, + 2B1, - 3 + A l 2  + 2B,, varies by only 6 percent over the range 2 < s < 2.2, and as 
an approximation we may regard it as constant and equal to 1.32 over that range. 
We then have 

(6.7) S z - 6.55 + 0*44a, 

where 

The parameter a is the excess number of close partners to a given sphere (the excess, 
that is, relative to the number for a uniform pair-distribution function) divided by 
the average number of sphere centres in the volume $na3. An interpretation of a 
which may be useful for observational purposes is obtained by regarding these close 
sphere pairs as doublets (of the temporary kind - our whole investigation is based on 
the premise that the dispersion is stable), the excess fraction of the total number of 
spheres which are partners in doublets a t  any' time being a$. The coefficient of a in 
(6.7) comes from the fact that the fall speed of two identical nearly-touching spheres, 
averaged over all orientations of the line of centres, exceeds that of two spheres which 
are far apart by 44 yo. 

6.3. #mall Pdclet number 

Here the pair-distribution was found to be 

correct to the order of Pij, where the scalar function Q(s)  satisfies the differential 
equation (4.28). We seek an expression for the mean velocity of particles of species i 
which is correct to leading order in Pii, that is, correct to order 9!i. 

The direct contribution to Sij due to gravity is given by (6.2), in which the values 
of J" and J' correct to order S!j are found by substituting in (3.5) and (3.6) an expres- 
sion for pi j  which contains only the leading term of (6.9) and so is spherically sym- 
metric. The integrations with respect to  the direction of s in J' and J" can be carried 
out, giving 

l + h 2  

+ y ( ~ )  ((A,,+2B12)exp s2ds-y(h2+3h+ 1) .  (6.10) 
The second direct contribution, due to the central interparticle force, is given by 

(6.3). The magnitude of Xi:) is not determined by the PCclet number alone ((Dii/kT 
also being involved), and we therefore try to obtain as much accuracy as possible by 
substituting the whole of the expression of (6.9) for p d j  in (6.3). The leading term in 
(6.9) is spherically symmetric and makes no contribution to the integral in (6.3), and 
after carrying out the integration with respect to the direction of s we find 

It appears therefore that, if (Dii/kT is of order unity, as is often the case in practice, 
the small departure of the pair-distribution function from spherical symmetry is 
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responsible for a value of 8:;) which is of the same order of magnitude as S$y) (although 
the numerical value might be smaller in consequence of the small range of action of 
interparticle forces). Note in particular that 27:;) does not tend to zero as gij -+ 0 for 
a given value of @$)/kT.  If the j-spheres have a larger fall speed in isolation (V$) 
directed downwards) and so are more numerous just above an i-sphere than just 
below it (Q < 0 ) ,  and if the interparticle force is generally repulsive (d( - cDij)/ds > 0 ) ,  
then, since 2A1,/(1 +A)-A,, < 0, (6.11) shows that the contribution to (AU,)(I) is 
in the same sense as V$; that is, thej-spheres are pushing the i-spheres downwards. 

Incidentally, we may confirm from (6 .11)  that S:;) tends to zero as the range of 
action of the interparticle force tends to zero (so that exp ( -  Qii/kT) --f 1 for s > 2 ) .  
The function &(s) is finite a t  s = 2 ,  and so, since 2A1,/(1 +A)-A,, = 0 a t  s = 2 (see 
(2.10)), the integral in (6.11) is zero in the limit. It may similarly be shown from (6.3), 
using the local Boltzmann distribution (4.24) valid near s = 2 ,  that S$) tends to zero 
a t  arbitrary Ptclet number when the force exerted between the i andj-spheres reduces 
to an exclusion of separations closer than the touching position. We have of course 
taken this for granted in the previous discussion of cases in which Oii = 0 for s > 2. 

The third direct contribution to Sii is due to Brownian diffusion, and is given by 
(6.4). Here we certainly need to substitute the whole of the expression (6.9) for p i j .  
The spherically symmetric term of leading order in (6.9) makes no contribution, and 
after carrying out the integration with respect to the direction of s we find 

--- I dA12) exp ( - 2) Q(s)  s2ds. (6.12) 
l + h  ds 

Thus Sii is the sum of the expressions (6.10)-(6.12). When the i and j-spheres are 
identical, this expression for Sij reduces to that given in (6.6). 

As mentioned in $4, (yh2- 1) Q is a linear function of y ,  because in this case of 
small PCclet number the effects of the forces applied to the i a n d j  particles are 
independent perturbations of an equilibrium system. We may therefore write 

(yA2 - 1) Q(s, Y )  A )  = Q’(s, A)  + Y&”(S, A), (6.13) 

where Q’ and Q” are independent of y (and Q’ = -Q” when A = 1 ) .  We may also 
introduce new sedimentation coefficients Si j ,  SQ which do not depend on y and are 
defined by the relation 

(6.14) 

where Fie) and F,Co) are the applied forces. The factor has been inserted in (6.14) 
for convenience in our particular case in which Fie) and FJo) represent gravitational 
forces proportional to the sphere volumes. Then from a comparison with (1.5), we see 
that 

8.. a 3  = S!.+y&. 23 (6.15) 

The explicit expressions for Sij and Sij can be obtained from (6.10)-(6.12) by replacing 
(yh2- l ) Q  by Q‘+ yQ” and t.hen identifying the coefficients of yo and y .  Note that, 
although in the present paper the applied forces are parallel, the expressions for 
Sij and Sij found in this way are valid for arbitrary directions of Fie) and FY). 



Sedimentation in a polydisperse system. Part 1 405 

These sedimentation coefficients Sij and h4S& defined by (6.14) enter into the 
expressions for the spatial flux of particles of one species due to Brownian diffusion 
in the presence of gradients of number density of the particles of the various species 
in a polydisperse system (Batchelor 1982). 

6.4. Two species of spheres with very different radii or densities 
It was shown in 3 4 that, when h < 1 or h 9 1, pti - 1 is small, being of order h3 when 
h < 1 and of order when h $ 1, for any given value of the PCclet number, provided 
only that the effects of interparticle forces are negligible a t  values of r-((ai+aj) 
comparable with the smaller of a, and ai. We may use this result now to obtain some 
asymptotic expressions for Sij which likewise are independent of the PCclet number. 

We consider first the direct contribution due to gravity given by (6.2). The tensors 
J' and J" in that equation can be written as 

ss J' = Ism (All+ 2B,, - (All-  l )>+ (B l l -  1)  
2 

(6.16) 

(6.17) 

and the orders of magnitude of all these integrals may be estimated. 

we find 
The behaviours of All ,  Bll, A12, B,, when h < 1 are shown in (2.8) and (2.9), whence 

3 
A12 + 2B1, - ; = o(h3). (6.19) and 

Use of the above result for pii - 1 then shows that when h < 1 

and 

(6.20) 

(6.21) 

On the other hand, when h 1, we may use the result noted in 3 2 that A,, - 1 and 
B,,- 1,  and hence also A,,+ 2B,,- 3, are of order A-l when h 9 1. We also know 
from (2.5) that A,, and B,, are unchanged when h is replaced by A-l, whence it follows 
from (6.19) that A,, + 2B,, - 3s-' is of order when h 9 1. Hence when h B 1 

J' = o(A-~),  J" = 0(h-3), (6.22) 

and the contribution to Sii due directly to gravity is 

8::) = - Y ( P +  3h + 1) + O(h-1). (6.23) 

These two expressions for Si:), (6.21) and (6.23), can be given a physical inter- 
pretation. When a sphere of radius ai is falling through a dispersion there are two 
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direct consequences of the presence of spheres of radius a j  in the fluid. One is that 
there is a net volume flux within a spherical surface of radius ai + ai surrounding each 
j sphere equal to  the sum of *;rru;UF) due to the motion of the rigid sphere itself and 
$nu33h- l+  Uy) due to  the motion of the fluid in the spherical shell surrounding 
the rigid sphere. This downward volume flux must be balanced by an equal upward 
flux in the remainder of the system, and so the mean velocity in the fluid accessible 
to the centre of an i sphere is 

- (1 + 3h-1+ & - 2 )  $i up, = - y(h2 + 3 h  + 8) $hi up. 

The other is that the motion of the j spheres generates an environment for each i sphere 
in which the Laplacian of the fluid velocity a t  any point is non-zero. As explained in 
the paper on sedimentation in a monodisperse system (Batchelor 1972) ,  this affects 
the motion of an i sphere (and the additional buoyancy force resulting from the greater 
density of the medium due to  the presence of t h e j  spheres is a part of this effect) and 
the change in the mean velocity of an i sphere which takes all accessible positions with 
equal probability is 

'h-2$j 2 up, = $y$iup), 

if we neglect further hydrodynamic interactions. Thus the total change in the mean 
velocity of an i sphere which takes all accessible positions with equal probability and 
which does not change its environment by its presence is 

- y(h2 + 3 h  + 1) $.j UiO). ( 6 . 2 4 )  

This is simply the last bracketed term in ( 3 . 4 ) .  No assumption about the magnitude 
of h has been made in the argument leading to ( 6 . 2 4 ) .  When h < 1 it accounts for the 
second term on the right-hand side of ( 6 . 2 1 )  and when h & I it accounts for the whole 
of the explicit part of ( 6 . 2 3 ) .  

However, it is not quite true that a large i sphere does not disturb the environment 
in which it is placed. One of the consequences of the presence of the i sphere for a 
neighbouring smaller sphere is that  the ambient velocity gradient at the position of 
the small sphere is non-zero and that the rate of energy dissipation in the fluid by 
viscosity is increased by the presence of the small sphere. All elements of the fluid 
surrounding the large sphere dissipate energy, not as a fluid of viscosity 7, but as a 
fluid of viscosity 7 containing, on average, n j  spheres of radius ai per unit volume, 
and we know from the Einstein formula that the effective viscosity of such a mixture 
is q( 1 + g$.,.) correct to the order of $i. The larger spheres are therefore falling through 
a fluid medium whose effective viscosity is 7( 1 + +gi), and the corresponding fractional 
change in the fall speed of the larger spheres is -Q$i. Note that it is not necessary 
for the validity of this explanation that there be a large number of small spheres in 
the neighbourhood of the large sphere; provided the probable number of small spheres 
in unit volume outside the large sphere is uniform, it does not matter how small this 
number is. Thus the first term on the right-hand side of ( 6 . 2 1 )  is also accounted for. 

There are also the contributions S::) and $7) given by ( 6 . 3 )  and (6.4) respectively. 
S$) is evidently small provided that, as has already been assumed, the interparticle 
force is negligible at sphere gaps comparable with the smaller of ai and ai. For Xi:) 
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we note that the expression within curly brackets in (6.4) is seen from (2.8) and (2.9) 
to  be of order h3 when h < 1. Hence, remembering the result concerningpij - 1, we find 

sip = 0(h4), (6.25) 

when h < 1, a t  any given value of the PCclet number. And when h B 1 we use the 
fact that A,, - 1 and B,, - 1 behave as A-l (as shown in 8 2) to find 

Sp = O(h--2). (6.26) 

It appears therefore that, both when h < 1 and when h 9 1, the sedimentation 
coefficient is dominated by the effect of gravity. At any Ptclet number we have 

xij = - i - y + O ( h )  when h < 1, (6.27) 

and Xij = - y(h2 + 3h + I )  + O(h-l) when h 9 1.  (6.28) 

The limiting cases y -+ 0 or IyJ --f 00 are quite straightforward. It was noted in 5 4 
that L(s) and M ( s ) ,  and hence also p C j  for a given PCclet number, approach finite 
limits as y -+ 0 or 171 -+ oc). The mobility functions do not depend on y ,  and it is 
evident therefore from (3.4) that, in the absence of any dependence of interparticle 
force effects on y ,  Sij is asymptotically linear in y as I yI --f cn for a given value of Yij. 
At small PCclet number 8,. has already been seen to be a linear function of y for all y ;  
and a t  large PCclet number we see from (6.5) that 

I am grateful to Dr J. M. Rallison and Mr C.-S. Wen for their comments on a draft 
of this paper. 
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